- No measurement has infinite accuracy or precision"
- K.F.Gauss:
- "Experimental physics numbers must have errors and dimension."
- G = (6.67310 ± 0.00010) [m³ kg⁻¹ s⁻²]
- Errors = deviations from Truth (unknown, but approached)
 - Large error:Result is insignificant.
 - **Small error:** Good measurement, it will test theories.
 - **Blunders :** no,no, repeat on Fridays correctly.
 - Random Errorsor "statistical" independent, repeated
measurements give (slightly) different resultsSystematic Errors"in the system", DVM 2% low,...
correct if you can, otherwise quote separate

Systematic error: inherent to the system or environment

Example:

Measure g with a pendulum:

 $T = 2\pi \sqrt{\frac{l}{g}}$

neglect m of thread) equipment (accuracy of scale, watch) environment (wind, big mass in basement) thermal expansion t 1.correct by $I=I_0(1+\alpha t)$ if t known or

 $\frac{1}{2} = \frac{1}{2} \left(1 + \frac{1}{2} \right) \left(1 + \frac{1}{2} \right)$

2.give sys.error Δ_t from est. range of t.

⇒ limits ACCURACY (=closeness to truth)

Random (statistic) error

example: measure period T of the pendulum several times:

> measurements of T jitter around "truth".
> (T) improves with N measurements, if they are **independent**.

Statistics N:

 \Rightarrow limits PRECISION , but lim(N-> $^{\infty}$)= truth

Evaluate: $g = (l \pm \sigma_l) \{2\pi / (T \pm \sigma_T)\}^2 = 9,809 \pm ??$

To find the statistical and systematic errors of g, we need error propagation (later) and do it separately- for statistical and for systematic errors. Let's say we found:

> g = (9.80913 ± .007_{stat}± .011_{sys})m/s² ↑nonsense digits

Compare to the "accepted value": (Physics.nist.gov/physRefData/contents.html) gives'global value'

 $g = 9.80665 \pm (0)$ by definition !!

 \Rightarrow conclusion: OK within (our) errors

Distribution of Measurements with Random Error: Limit N->∞ Parent Distribution.

Measure resistors N times: manufacture $100\Omega \pm 5\%$ DVM accurate to $\pm 1\%$ contact resistance $\pm 0.2\Omega$

INDEPENDENT !!!

	N measured samples	Parent distribution
Graph	histogram	smooth curve
Average -> Mean	$\langle x \rangle = \frac{1}{N} \sum_{i=1}^{N} x_i$	$\mu = \lim_{N \to \infty} \left(\frac{1}{N} \sum_{i=1}^{N} x_i \right)$
Variance -> standard deviation	$s_x^2 = \frac{1}{N-1} \sum_{i=1}^N (x_i - \langle x \rangle)^2$	$\sigma_{x}^{2} = \lim_{N \to \infty} \left(\frac{1}{N-1} \sum_{i=1}^{N} (x_{i} - \mu)^{2} \right)$
Result ± error	$\langle x \rangle \pm s_x / \sqrt{N}$	$\mu \pm 0$

Famous Probability Distibutions:

Binomial: Yes(Head): p No(Tail): q = 1-p

x heads in n trials: $p^{x}q^{n-x}$ for pppppp qqqqq seq., There are $\begin{pmatrix} x \\ n \end{pmatrix} = \frac{n!}{x!(n-x)!}$ permutations, so that:

Seldom used, but grandfather of the following:

Poisson: follows for low $p \ll 1$, yet $n \cdot p = \mu$ Observe r events in time interval t

Intervals between two events: $P(0,\lambda \bullet t) = e^{-\lambda \bullet t} \rightarrow t = 0$ most likely!!!!

Gaussian.. is the case for $n \cdot p >>1$ (applicable to 1%, if np >17)

Central Limit Theorem: "Folding many different distributions -> always a Gaussian". This is the case in most of your measurements.

Distribution of 100 $\pm 5~\Omega$ resistors

 $\mu = 104 \pm ????$

No good fit !!!

Still $\sqrt{s} = 7.5 \Omega$

Someone selected out!!

Given a histogram of measurements:

How do you know it is

- a) A Poisson distribution?
- b) Since you do not know the true mean, check the
- c) Sample Variance^{1/2} $\sqrt{S} = \sqrt{\frac{1}{N-1} \sum_{i} (x_i \langle x \rangle)^2}$
- d) Against the standard deviation $\sigma = \sqrt{\mu} \approx \sqrt{\langle x \rangle}$

Triva question:"If I make 100 of the left hand measurements and lump together in one distribution, will I see the right hand shape?" YES!!

PROPAGATION OF ERRORS Bevington ch.3

You measure $u \pm \sigma_u$ and $v \pm \sigma_v$, but evaluate x = u + v or x = u/vand want the error of x.

Taylor expansion:

$$x_i - \langle x \rangle = (u_i - \langle u \rangle) \frac{\partial x}{\partial u} + (v_i - \langle v \rangle) \frac{\partial x}{\partial v} + \dots$$

then

$$\sigma_x^2 = \lim_{N \to \infty} \frac{1}{N} \left((u_i - \langle u \rangle) \frac{\partial x}{\partial u} + (v_i - \langle v \rangle) \frac{\partial x}{\partial v} \right)^2$$
$$= \sigma_u^2 \left(\frac{\partial x}{\partial u} \right)^2 + \sigma_v^2 \left(\frac{\partial x}{\partial v} \right)^2 + 2\sigma_{uv}^2 \left(\frac{\partial x}{\partial u} \right) \frac{\partial x}{\partial v} \right)^2$$

= 0 if uncorrelated, otherwise $\sigma_{\mu\nu}$ covariance matrix -difficult

Sum & Diff: x = au + bv ->
$$\sigma_x^2 = a^2 \sigma_u^2 + b^2 \sigma_v^2 \pm 2ab\sigma_{uv}^2$$

Prod.&Div: x = a.uv or a.u/v ->
$$\frac{\sigma_x^2}{x^2} = \frac{\sigma_u^2}{u^2} + \frac{\sigma_v^2}{v^2} + \frac{2\sigma_{uv}^2}{uv}$$

Powers:
$$x = a T^4$$
 -> $\frac{\sigma_x}{x} = \pm 4 \frac{\sigma_T}{T}$ watch out!

Famous Confusion

Mak e a measurement, get theme an

What is the err or ? NOT $\mathbf{\sigma}_{\mathbf{x}}$!!! $\sigma_x^2 = s_x^2 = \frac{1}{N-1} \sum_{i=1}^N (x_i - \langle x \rangle)^2$

Beste stimate= mea n:
$$\langle x \rangle = \frac{1}{N} \sum_{i=1}^{N} x_i \pm \frac{\sigma_x}{\sqrt{N}}$$
 err or of the mean
Bevingt on eq 4.12 mak e man y measurement s!

If measure ments x_i have different errors σ_I

Combine:
$$\langle x \rangle = \frac{\sum \frac{x_i}{\sigma_i^2}}{\sum \frac{1}{\sigma_i^2}}$$
 with $\sigma = \sqrt{\frac{1}{\sum \frac{1}{\sigma_i^2}}}$

They are called: weighte d avera ge \pm comb in ed st. dev.

 $N(t) = (330 \pm 60_{stat} \pm 10_{syst}) \\ exp{t/(2.3 \pm .6 \mu s)} \\ not impressive$

The Art of fitting or he χ^2 -distribution:

Bevington, ch.4

Assume we know μ_I the true function values in the i-th bin. We measure n times x_i with random error σ_i in each bin and evaluate

$$\chi^2 = \sum_{i=1}^n \left(\frac{x_i - \mu_i}{\sigma_i} \right)^2$$

Clearly this quantity has a distribution itself, because the next random sample of n measurements will have different χ^2 .

You usually have the reverse case, the true function is not known, but approximated by

a "best fit", based on n measurements.

You want to know: "Is the fit acceptable?"

The χ^2 distribution gives you the probability that your measurement has this particular χ^2 . Define χ^2 =u and v = n - #parameters = "degrees of freedom". (With 2 data points and 2 parameters the curve must go through them, there is no "freedom to fit".)

The distribution is

$$P(u) = \frac{\left(\frac{u}{2}\right)^{\frac{v}{2}-1} e^{\frac{u}{2}}}{2\Gamma\left(\frac{v}{2}\right)} \quad \text{where } \Gamma = \text{Gamma funct.}$$